2,384 research outputs found

    Microphysical controls on the stratocumulus topped boundary-layer structure during VOCALS-REx

    Get PDF
    Simulations at a range of resolutions are compared to observations from the South-East Pacific taken during VOCALS-REx. It is found that increased horizontal and vertical resolution make only small improvements to the bulk properties of the simulated cloud and drizzle, but the highest resolution simulation is able to realistically represent mesoscale features in the cloud field. We focus on the highest resolution simulation and demonstrate that a poor representation of the cloud microphysics results in excessive drizzle production. This promotes persistent drizzle induced decoupling of the boundary layer, giving a poor representation of the observed diurnal cycle of stratocumulus. Two simple changes to the microphysics scheme are implemented: a modified autoconversion parametrization and a new representation of the rain drop size distribution. This results in a more realistic simulation of boundary-layer diurnal decoupling, and improvements to the cloud liquid water path and surface drizzle rate

    El Niño and the delayed action oscillator

    Get PDF
    We study the dynamics of the El Niño phenomenon using the mathematical model of delayedaction oscillator (DAO). Topics such as the influence of the annual cycle, global warming, stochastic influences due to weather conditions and even off-equatorial heat-sinks can all be discussed using only modest analytical and numerical resources. Thus the DAO allows for a pedagogical introduction to the science of El Niño and La Niña while at the same time avoiding the need for large-scale computing resources normally associated with much more sophisticated coupled atmosphere-ocean general circulation models. It is an approach which is ideally suited for student projects both at high school and undergraduate level

    Friction in mid-latitude cyclones: an Ekman-PV mechanism

    Get PDF
    The mechanism by which the atmospheric boundary layer reduces the intensity of mid-latitude cyclones is investigated. It is demonstrated that two alternative theories, Ekman pumping and the baroclinic potential vorticity (PV) mechanism, in fact act in union to maximize the spin-down. Ekman pumping aids the ventilation of PV from the boundary layer, and shapes the resulting PV anomaly into one of increased static stability. PV inversion techniques are used to demonstrate how this anomaly reduces the coupling between the upper- and lower-levels within the cyclone, reducing the growth rate

    Ozone chemistry on tidally locked M dwarf planets

    Get PDF
    This is the final version. Available from Oxford University Press via the DOI in this recordWe use the Met Office Unified Model to explore the potential of a tidally locked M dwarf planet, nominally Proxima Centauri b irradiated by a quiescent version of its host star, to sustain an atmospheric ozone layer. We assume a slab ocean surface layer, and an Earth-like atmosphere of nitrogen and oxygen with trace amounts of ozone and water vapour. We describe ozone chemistry using the Chapman mechanism and the hydrogen oxide (HOx, describing the sum of OH and HO2) catalytic cycle. We find that Proxima Centauri radiates with sufficient UV energy to initialize the Chapman mechanism. The result is a thin but stable ozone layer that peaks at 0.75 parts per million at 25 km. The quasi-stationary distribution of atmospheric ozone is determined by photolysis driven by incoming stellar radiation and by atmospheric transport. Ozone mole fractions are smallest in the lowest 15 km of the atmosphere at the sub-stellar point and largest in the nightside gyres. Above 15 km the ozone distribution is dominated by an equatorial jet stream that circumnavigates the planet. The nightside ozone distribution is dominated by two cyclonic Rossby gyres that result in localized ozone hotspots. On the dayside the atmospheric lifetime is determined by the HOx catalytic cycle and deposition to the surface, with nightside lifetimes due to chemistry much longer than timescales associated with atmospheric transport. Surface UV values peak at the substellar point with values of 0.01 W/m2 , shielded by the overlying atmospheric ozone layer but more importantly by water vapour clouds.Leverhulme TrustScience and Technology Facilities Council (STFC

    Overcast on Osiris: 3D radiative-hydrodynamical simulations of a cloudy hot Jupiter using the parametrized, phase-equilibrium cloud formation code EDDYSED (article)

    Get PDF
    This is the final version. Available from OUP via the DOI in this recordThe dataset associated with this article is available in ORE: https://doi.org/10.24378/exe.1483We present results from 3D radiative-hydrodynamical simulations of HD 209458b with a fully coupled treatment of clouds using the EDDYSED code, critically, including cloud radiative feedback via absorption and scattering. We demonstrate that the thermal and optical structure of the simulated atmosphere is markedly different, for the majority of our simulations, when including cloud radiative effects, suggesting this important mechanism cannot be neglected. Additionally, we further demonstrate that the cloud structure is sensitive to not only the cloud sedimentation efficiency (termed fsed in EDDYSED), but also the temperature–pressure profile of the deeper atmosphere. We briefly discuss the large difference between the resolved cloud structures of this work, adopting a phase-equilibrium and parametrized cloud model, and our previous work incorporating a cloud microphysical model, although a fairer comparison where, for example, the same list of constituent condensates is included in both treatments is reserved for a future work. Our results underline the importance of further study into the potential condensate size distributions and vertical structures, as both strongly influence the radiative impact of clouds on the atmosphere. Finally, we present synthetic observations from our simulations reporting an improved match, over our previous cloud-free simulations, to the observed transmission, HST WFC3 emission, and 4.5 μm Spitzer phase curve of HD 209458b. Additionally, we find all our cloudy simulations have an apparent albedo consistent with observations.Leverhulme TrustScience and Technology Facilities Council (STFC

    Simulating the cloudy atmospheres of HD 209458 b and HD 189733 b with the 3D Met Office Unified Model

    Get PDF
    Aims.To understand and compare the 3D atmospheric structure of HD 209458 b and HD 189733 b, focusing on the formation and distribution of cloud particles, as well as their feedback on the dynamics and thermal profile. Methods. We coupled the 3D Met Office Unified Model (UM), including detailed treatments of atmospheric radiative transfer anddynamics, to a kinetic cloud formation scheme. The resulting model self–consistently solves for the formation of condensation seeds,surface growth and evaporation, gravitational settling and advection, cloud radiative feedback via absorption, and crucially, scattering. We used fluxes directly obtained from the UM to produce synthetic spectral energy distributions and phase curves. Results. Our simulations show extensive cloud formation in both HD 209458 b and HD 189733 b. However, cooler temperatures in the latter result in higher cloud particle number densities. Large particles, reaching 1μm in diameter, can form due to high particle growth velocities, and sub-μm particles are suspended by vertical flows leading to extensive upper-atmosphere cloud cover. A combination of meridional advection and efficient cloud formation in cooler high latitude regions, results in enhanced cloud coverage for latitudes above 30° and leads to a zonally banded structure for all our simulations. The cloud bands extend around the entire planet, for HD209458 b and HD 189733 b, as the temperatures, even on the day side, remain below the condensation temperature of silicates and oxides. Therefore, the simulated optical phase curve for HD 209458 b shows no ‘offset’, in contrast to observations. Efficient scattering of stellar irradiation by cloud particles results in a local maximum cooling of up to 250 K in the upper atmosphere, and an advection-driven fluctuating cloud opacity causes temporal variability in the thermal emission. The inclusion of this fundamental cloud-atmosphere radiative feedback leads to significant differences with approaches neglecting these physical elements, which have been employed to interpret observations and determine thermal profiles for these planets. This suggests that readers should be cautious of interpretations neglecting such cloud feedback and scattering, and that the subject merits further study.PostprintPeer reviewe

    A Pan-African Convection-Permitting Regional Climate Simulation with the Met Office Unified Model: CP4-Africa

    Get PDF
    This is the final version. Available on open access from the American Meteorological Society via the DOI in this recordA convection-permitting multiyear regional climate simulation using the Met Office Unified Model has been run for the first time on an Africa-wide domain. The model has been run as part of the Future Climate for Africa (FCFA) Improving Model Processes for African Climate (IMPALA) project, and its configuration, domain, and forcing data are described here in detail. The model [Pan-African Convection-Permitting Regional Climate Simulation with the Met Office UM (CP4-Africa)] uses a 4.5-km horizontal grid spacing at the equator and is run without a convection parameterization, nested within a global atmospheric model driven by observations at the sea surface, which does include a convection scheme. An additional regional simulation, with identical resolution and physical parameterizations to the global model, but with the domain, land surface, and aerosol climatologies of CP4-Africa, has been run to aid in the understanding of the differences between the CP4-Africa and global model, in particular to isolate the impact of the convection parameterization and resolution. The effect of enforcing moisture conservation in CP4-Africa is described and its impact on reducing extreme precipitation values is assessed. Preliminary results from the first five years of the CP4-Africa simulation show substantial improvements in JJA average rainfall compared to the parameterized convection models, with most notably a reduction in the persistent dry bias in West Africa, giving an indication of the benefits to be gained from running a convection-permitting simulation over the whole African continent.Natural Environment Research Council (NERC

    Meteorological Controls on Local and Regional Volcanic Ash Dispersal

    Get PDF
    Volcanic ash has the capacity to impact human health, livestock, crops and infrastructure, including international air traffic. For recent major eruptions, information on the volcanic ash plume has been combined with relatively coarse-resolution meteorological model output to provide simulations of regional ash dispersal, with reasonable success on the scale of hundreds of kilometres. However, to predict and mitigate these impacts locally, significant improvements in modelling capability are required. Here, we present results from a dynamic meteorological-ash-dispersion model configured with sufficient resolution to represent local topographic and convectively-forced flows. We focus on an archetypal volcanic setting, Soufrière, St Vincent, and use the exceptional historical records of the 1902 and 1979 eruptions to challenge our simulations. We find that the evolution and characteristics of ash deposition on St Vincent and nearby islands can be accurately simulated when the wind shear associated with the trade wind inversion and topographically-forced flows are represented. The wind shear plays a primary role and topographic flows a secondary role on ash distribution on local to regional scales. We propose a new explanation for the downwind ash deposition maxima, commonly observed in volcanic eruptions, as resulting from the detailed forcing of mesoscale meteorology on the ash plume
    corecore